Predicting causality ascriptions from background knowledge: model and experimental validation

نویسندگان

  • Jean-François Bonnefon
  • Rui Da Silva Neves
  • Didier Dubois
  • Henri Prade
چکیده

A model is defined that predicts an agent’s ascriptions of causality (and related notions of facilitation and justification) between two events in a chain, based on background knowledge about the normal course of the world. Background knowledge is represented by nonmonotonic consequence relations. This enables the model to handle situations of poor information, where background knowledge is not accurate enough to be represented in, e.g., structural equations. Tentative properties of causality ascriptions are discussed, and the conditions under which they hold are identified (preference for abnormal factors, transitivity, coherence with logical entailment, and stability with respect to disjunction and conjunction). Empirical data are reported to support the psychological plausibility of our basic definitions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Background Default Knowledge and Causality Ascriptions

A model is defined that predicts an agent’s ascriptions of causality (and related notions of facilitation and justification) between two events in a chain, based on background knowledge about the normal course of the world. Background knowledge is represented by nonmonotonic consequence relations. This enables the model to handle situations of poor information, where background knowledge is not...

متن کامل

From Acceptation Relations to Causality Ascription in a Belief Function Framework

From a generic set of uncertain pieces of information about the normal course of things and a temporal sequence of reported facts, an intelligent artifact should be able to identify causally related events and distinguish between factors that facilitate or justify the occurrence of events from other facts. In this paper, we propose a model for causality and facilitation ascriptions when the bac...

متن کامل

Combining Structure Equation Model with Bayesian Networks for predicting with high accuracy of recommending surgery for better survival in Benign prostatic hyperplasia patients

Abstract: Causal discovery is the key aspect of science. Inferring causality can be achieved in various ways. Typically, you start with your hypothesis (based on what you know so far) and based on the data you collect, you update your hypothesis. In a nutshell, causality can be inferred via your background knowledge and empirical data. Causal Both Bayesian networks (BN) and Structural equation ...

متن کامل

Artificial Neural Network Modeling for Predicting of some Ion Concentrations in the Karaj River

The water quality of the Karaj River was studied through collecting 2137 experimental data set gained by 20 sampling stations. The data included different parameters such as T (temperature), pH, NTU (turbidity), hardness, TDS (total dissolved solids), EC (electrical conductivity) and basic anion, cation concentrations. In this study a multi-layer perceptron artificial neural network model was d...

متن کامل

Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications

Background: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism’s metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains.Objectives: In the present study, we have evaluated the predictive power of two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2008